next up previous contents
Next: 3.3.3 Full QMC vertex Up: 3.3 Approximations to the Previous: 3.3.1 First Order in

3.3.2 Second Order in $ U$

At lower temperature or for larger $ U$, higher-order terms in the vertex are important. The second order corrections to the irreducible vertex function in the $ \lambda $-approximation (i.e. zero external momentum transfer $ q=0$ and frequency $ \nu_n=0$) are shown in Fig. 3.6. The irreducible vertex is given in the spin channel by

Figure: Second order diagrams for the vertex functions $ \Gamma^2_{\uparrow\uparrow}$ - a.) and $ \Gamma^2_{\uparrow\downarrow}$ - b.) for an external momentum transfer $ q=0$.
\includegraphics[width=0.9\textwidth,clip, clip]{2ndorderU.eps}

\begin{displaymath}\begin{split}\Gamma^{(\lambda)s}(i\omega_n,i\omega_{n'};K_1&,...
...\omega_n+i\omega_{n'}-i\omega_{n''},K_1+K_1'-K_1'') \end{split}\end{displaymath} (3.23)

and in the charge channel

\begin{displaymath}\begin{split}\Gamma^{(\lambda)c}(i\omega_n,i\omega_{n'}&;K_1,...
...ega_n-i\omega_{n'}+i\omega_{n''},K_1-K_1'+K_1''))~. \end{split}\end{displaymath} (3.24)



© Cyrill Slezak