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A crystal lattice is special due to its long range order. As you ex-

plored in the homework, this yields a sharp diffraction pattern, espe-

cially in 3-d. However, lattice vibrations are important. Among other

things, they contribute to

• the thermal conductivity of insulators is due to dispersive lattice

vibrations, and it can be quite large (in fact, diamond has a ther-

mal conductivity which is about 6 times that of metallic copper).

• in scattering they reduce of the spot intensities, and also allow

for inelastic scattering where the energy of the scatterer (i.e. a

neutron) changes due to the absorption or creation of a phonon in

the target.

• electron-phonon interactions renormalize the properties of elec-

trons (make them heavier).

• superconductivity (conventional) comes from multiple electron-

phonon scattering between time-reversed electrons.

1 An Adiabatic Theory of Lattice Vibrations

At first glance, a theory of lattice vibrations would appear impossibly

daunting. We have N ≈ 1023 ions interacting strongly (with energies of

about (e2/A)) with N electrons. However, there is a natural expansion

parameter for this problem, which is the ratio of the electronic to the
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ionic mass:
m

M
≪ 1 (1)

which allows us to derive an accurate theory.

Due to Newton’s third law, the forces on the ions and electrons are

comparable F ∼ e2/a2, where a is the lattice constant. If we imagine

that, at least for small excursions, the forces binding the electrons and

the ions to the lattice may be modeled as harmonic oscillators, then

F ∼ e2/a2 ∼ mω2
electrona ∼Mω2

iona (2)

This means that

ωion

ωelectron
∼
(

m

M

)1/2

∼ 10−3 to 10−2 (3)

Which means that the ion is essentially stationary during the period

of the electronic motion. For this reason we may make an adiabatic

approximation:

• we treat the ions as stationary at locations R1, · · ·RN and deter-

mine the electronic ground state energy, E(R1, · · ·RN). This may

be done using standard ab-initio band structure techniques such

as those used by FJP.

• we then use this as a potential for the ions; i.e.. we recalculate

E as a function of the ionic locations, always assuming that the

electrons remain in their ground state.
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Figure 1: Nomenclature for the lattice vibration problem. sn,α is the displacement of

the atom α within the n-th unit cell from its equilibrium position, given by rn,α =

rn + rα, where as usual, rn = n1a1 + n2a2 + n3a3.

Thus the potential energy for the ions

φ(R1, · · ·RN ) = E(R1, · · ·RN) + the ion-ion interaction (4)

We will define the zero potential such that when all Rn are at their

equilibrium positions, φ = 0. Then

H =
∑

n

P 2
n

2M
+ φ(R1, · · ·RN) (5)

Typical lattice vibrations involve small atomic excursions of the or-

der 0.1A or smaller, thus we may expand about the equilibrium position

of the ions.

φ({rnαi + snαi}) = φ({rnαi}) +
∂φ

∂rnαi
snαi +

1

2

∂2φ

∂rnαi∂rmβj
snαismβj (6)

The first two terms in the sum are zero; the first by definition, and

the second is zero since it is the first derivative of a potential being
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evaluated at the equilibrium position. We will define the matrix

Φmβj
nαi =

∂2φ

∂rnαi∂rmβj
(7)

From the different conservation laws (related to symmetries) of the

system one may derive some simple relationships for Φ. We will discuss

these in detail later. However, one must be introduced now, that is,

αr αs

Figure 2: Since the coefficients of potential between the atoms linked by the blue lines

(or the red lines) must be identical, Φmβj
nαi = Φ

(m−n)βj
0αi .

due to translational invariance.

Φmβj
nαi = Φ

(m−n)βj
0αi =

∂2φ

∂r0αi∂r(n−m)βj
(8)

ie, it can only depend upon the distance. This is important for the next

subsection.
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1.1 The Equation of Motion

From the derivative of the potential, we can calculate the force on each

site

Fnαi = −∂φ({rmβj + smβj})
∂snαi

(9)

so that the equation of motion is

−Φmβj
nαi smβj = Mαs̈nαi (10)

If there are N unit cells, each with r atoms, then this gives 3Nr equa-

tions of motion. We will take advantage of the periodicity of the lattice

by using Fourier transforms to achieve a significant decoupling of these

equations. Imagine that the coordinate s of each site is decomposed

into its Fourier components. Since the equations are linear, we may just

consider one of these components to derive our equations of motion in

Fourier space

snαi =
1√
Mα

uαi(q)ei(q·rn−ωt) (11)

where the first two terms on the rhs serve as the polarization vector

for the oscillation, uαi(q) is independent of n due to the translational

invariance of the system. In a real system the real s would be composed

of a sum over all q and polarizations. With this substitution, the

equations of motion become

ω2uαi(q) =
1

√

MαMβ

Φmβj
nαi e

iq·(rm−rn)uβj(q) sum repeated indices .

(12)
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t = 0

t = ∆t

t = 2 ∆t

Figure 3: uαi(q) is independent of n so that a lattice vibration can propagate and

respect the translational invariance of the lattice.

Recall that Φmβj
nαi = Φ

(m−n)βj
0αi so that if we identify

Dβj
αi =

1
√

MαMβ

Φmβj
nαi e

iq·(rm−rn) =
1

√

MαMβ

Φpβj
0αie

iq·(rp) (13)

where rp = rm − rn, then the equation of motion becomes

ω2uαi(q) = Dβj
αiuβj(q) (14)

or
(

Dβj
αi − ω2δβj

αi

)

uβj(q) = 0 (15)

which only has nontrivial (u 6= 0) solutions if det
(

D(q) − ω2I
)

= 0.

For each q there are 3r different solutions (branches) with eigenvalues

ω(n)(q) (or rather ω(n)(q) are the root of the eigenvalues). The de-

pendence of these eigenvalues ω(n)(q) on q is known as the dispersion

relation.

8



basis

a

α = 1 α = 2M1
M2 f

Figure 4: A linear chain of oscillators composed of a two-element basis with different

masses, M1 and M2 and equal strength springs with spring constant f .

1.2 Example, a Linear Chain

Consider a linear chain of oscillators composed of a two-element ba-

sis with different masses, M1 and M2 and equal strength springs with

spring constant f . It has the potential energy

φ =
1

2
f
∑

n
(sn,1 − sn,2)

2 + (sn,2 − sn+1,1)
2 . (16)

We may suppress the indices i and j, and search for a solution

snα =
1√
Mα

uα(q)ei(q·rn−ωt) (17)

to the equation of motion

ω2uα(q) = Dβ
αuβ(q) where Dβ

α =
1

√

MαMβ

Φp,β
0α e

iq·(rp) (18)

and,

Φm,β
n,α =

∂2φ

∂r0,α∂r(n−m),β
(19)

where nontrivial solutions are found by solving det
(

D(q) − ω2I
)

= 0.

The potential matrix has the form

Φn,1
n,1 = Φn,2

n,2 = 2f (20)
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Φn,2
n,1 = Φn,1

n,2 = Φn−1,2
n,1 = Φn+1,1

n,2 = −f . (21)

This may be Fourier transformed on the space index n by inspection,

so that

Dβ
α =

1
√

MαMβ

Φpβ
0αe

iq·(rp)

=









2f
M1

− f√
M1M2

(

1 + e−iqa
)

− f√
M1M2

(

1 + e+iqa
)

2f
M2









(22)

Note that the matrix D is hermitian, as it must be to yield real, physi-

cal, eigenvalues ω2 (however, ω can still be imaginary if ω2 is negative,

indicating an unstable mode). The secular equation det
(

D(q) − ω2I
)

=

0 becomes

ω4 − ω22f

(

1

M1
+

1

M2

)

+
4f 2

M1M2
sin2(qa/2) = 0 , (23)

with solutions

ω2 = f

(

1

M1
+

1

M2

)

± f

√

√

√

√

(

1

M1
+

1

M2

)2

− 4

M1M2
sin2(qa/2) (24)

This equation simplifies significantly in the q → 0 and q/a→ π limits.

In units where a = 1, and where the reduced mass 1/µ =
(

1
M1

+ 1
M2

)

,

lim
q→0

ω−(q) = qa

√

√

√

√

fµ

2M1M2
lim
q→0

ω+(q) =

√

√

√

√

2f

µ
(25)

and

ω−(q = π/a) =
√

2f/M2 . ω+(q = π/a) =
√

2f/M1 (26)
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Figure 5: Dispersion of the linear chain of oscillators shown in Fig. 4 when M1 = 1,

M2 = 2 and f = 1. The upper branch ω+ is called the optical and the lower branch is

the acoustic mode.

As a result, the + mode is quite flat; whereas the − mode varies from

zero at the Brillouin zone center q = 0 to a flat value at the edge of the

zone. This behavior is plotted in Fig. 5.

It is also instructive to look at the eigenvectors, since they will tell

us how the atoms vibrate. Let’s look at the optical mode at q = 0,

ω+(0) =
√

2f/µ. Here,

D =









2f/M1 −2f/
√
M1M2

−2f/
√
M1M2 2f/M2









. (27)

11



Eigenvectors are non-trivial solutions to (ω2I −D)u = 0, or

0 =









2f/µ− 2f/M1 2f/
√
M1M2

2f/
√
M1M2 2f/µ− 2f/M2

















u1

u2









. (28)

with the solution u1 = −
√

M2/M1u2. In terms of the actual displace-

ments Eqs.11
sn1

sn2
=

√

√

√

√

M2

M1

u1

u2
(29)

or sn1/sn2 = −M2/M1 so that the two atoms in the basis are moving

out of phase with amplitudes of motion inversely proportional to their

masses. These modes are described as optical modes since these atoms,

Figure 6: Optical Mode (bottom) of the linear chain (top).

if oppositely charged, would form an oscillating dipole which would

couple to optical fields with λ ∼ a. Not all optical modes are optically

active.

1.3 The Constraints of Symmetry

We know a great deal about the dispersion of the lattice vibrations

without solving explicitly for them. For example, we know that for each

q, there will be dr modes (where d is the lattice dimension, and r is the
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number of atoms in the basis). We also expect (and implicitly assumed

above) that the allowed frequencies are real and positive. However,

from simple mathematical identities, the point-group and translational

symmetries of the lattice, and its time-reversal invariance, we can learn

more about the dispersion without solving any particular problem.

The basic symmetries that we will employ are

• The translational invariance of the lattice and reciprocal lattice.

• The point group symmetries of the lattice and reciprocal lattice.

• Time-reversal invariance.

1.3.1 Symmetry of the Dispersion

Complex Properties of the dispersion and Eigenmodes First, from the

symmetry of the second derivative, one may show that ω2 is real. Recall

that the dispersion is determined by the secular equation det
(

D(q) − ω2I
)

=

0, so if D is hermitian, then its eigenvalues, ω2, must be real.

D∗βj
αi =

1
√

MαMβ

Φpβj
0αie

−iq·(rp) (30)

=
1

√

MαMβ

Φ−p,β,j
0,α,i eiq·(rp) (31)

Then, due to the symmetric properties of the second derivative

D∗βj
αi =

1
√

MαMβ

Φ0,α,i
−p,β,je

iq·(rp) =
1

√

MαMβ

Φp,α,i
0,β,je

iq·(rp) = Dαi
βj (32)
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Thus, DT ∗ = D† = D so D is hermitian and its eigenvalues ω2 are

real. This means that either ω are real or they are pure imaginary. We

will assume the former. The latter yields pure exponential growth of

our Fourier solution, indicating an instability of the lattice to a second-

order structural phase transition.

Time-reversal invariance allows us to show related results. We as-

sume a solution of the form

snαi =
1√
Mα

uαi(q)ei(q·rn−ωt) (33)

which is a plane wave. Suppose that the plane wave is moving to the

right so that q = x̂qx, then the plane of stationary phase travels to the

right with

x =
ω

qx
t . (34)

Clearly then changing the sign of qx is equivalent to taking t → −t.
If the system is to display proper time-reversal invariance, so that the

plane wave retraces its path under time-reversal, it must have the same

frequency when time, and hence q, is reversed, so

ω(−q) = ω(q) . (35)

Note that this is fully equivalent to the statement that Dαi
βj(q) =

D∗αi
βj (−q) which is clear from the definition of D.

Now, return to the secular equation, Eq. 15.

(

Dβj
αi (q) − ω2(q)δβj

αi

)

ǫβj(q) = 0 (36)
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Lets call the (normalized) eigenvectors of this equation ǫ. They are the

elements of a unitary matrix which diagonalizes D. As a result, they

have orthogonality and completeness relations

∑

α,i

ǫ
∗(n)
α,i (q)ǫ

(m)
α,i (q) = δm,n orthogonality (37)

∑

n
ǫ
∗(n)
α,i (q)ǫ

∗(n)
β,j (q) = δα,βδi,j (38)

If we now take the complex conjugate of the secular equation
(

Dβj
αi (−q) − ω2(−q)δβj

αi

)

ǫ∗βj(q) = 0 (39)

Then it must be that

ǫ∗βj(q) ∝ ǫβj(−q) . (40)

Since the {ǫ} are normalized the constant of proportionality may be

chosen as one

ǫ∗βj(q) = ǫβj(−q) . (41)

Point-Group Symmetry and the Dispersion A point group operation

takes a crystal back to an identical configuration. Both the original

and final lattice must have the same dispersion. Thus, since the recip-

rocal lattice has the same point group as the real lattice, the dispersion

relations have the same point group symmetry as the lattice.

For example, the dispersion must share the periodicity of the Bril-

louin zone. From the definition of D

Dβj
αi (q) =

1
√

MαMβ

Φpβj
0αie

iq·(rp) (42)
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it is easy to see that Dβj
αi (q + G) = Dβj

αi (q) (since G · rp = 2πn, where

n is an integer). I.e., D is periodic in k-space, and so its eigenvalues

(and eigenvectors) must also be periodic.

ω(n)(k + G) = ω(n)(k) (43)

ǫβj(k + G) = ǫβj(k) . (44)

1.3.2 Symmetry and the Need for Acoustic modes

Applying basic symmetries, we can show that an elemental lattice (that

with r = 1) must have an acoustic model. First, look at the transla-

s11

Figure 7: If each ion is shifted by s1,1,i, then the lattice energy is unchanged.

tional invariance of Φ . Suppose we make an overall shift of the lattice

by an arbitrary displacement sn,α,i for all sites n and elements of the

basis α (i.e. sn,α,i = s1,1,i). Then, since the interaction is only between
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ions, the energy of the system should remain unchanged.

δE =
1

2

∑

m,n,α,β,i,j

Φm−n,β,j
0,α,i sn,α,ism,β,j = 0 (45)

=
1

2

∑

mnα,β,i,j

Φm−n,β,j
0,α,i s1,1,is1,1,j (46)

=
1

2

∑

i,j

s1,1,is1,1,j

∑

mnα,β

Φm−n,β,j
0,α,i (47)

Since we know that s1,1,i is finite, it must be that

∑

m,n,α,β

Φm−n,β,j
0,α,i =

∑

p,α,β

Φp,β,j
0,α,i = 0 (48)

Now consider a strain on the system Vm,β,j, described by the strain

matrix mα,i
β,j

Vm,β,j =
∑

α,i

mα,i
β,jsm,α,i (49)

After the stress has been applied, the atoms in the bulk of the sample

V

Figure 8: After a stress is applied to a lattice, the movement of each ion (strain) is

not only in the direction of the applied stress. The response of the lattice to an applied

stress is described by the strain matrix.

are again in equilibrium (those on the surface are maintained in equi-

librium by the stress), and so the net force must be zero. Looking at

17



the central (n = 0) atom this means that

0 = F0,α,i = − ∑

m,β,j,γ,k

Φm,β,j
0,α,i m

γ,k
β,jsm,γ,k (50)

Since this applies for an arbitrary strain matrix mγ,k
β,j , the coefficients

for each mγ,k
β,j must be zero

∑

m
Φm,β,j

0,α,i sm,γ,k = 0 (51)

An alternative way (cf. Callaway) to show this is to recall that the

reflection symmetry of the lattice requires that Φm,β,j
0,α,i be even in m;

whereas, sm,γ,k is odd in m. Thus the sum over all m yields zero.

Now let’s apply these constraints to D for an elemental lattice where

r = 1, and we may suppress the basis indices α.

Dj
i (q) =

1

M

∑

p
Φp,j

0,ie
iq·(rp) (52)

For small q we may expand D

Dj
i (q) =

1

M

∑

p
Φp,j

0,i

(

1 + iq · (rp) −
1

2
(q · (rp))

2 + · · ·
)

(53)

We have shown above that the first two terms in this series are zero.

Thus,

Dj
i (q) ≈ − 1

2M

∑

p
Φp,j

0,i (iq · (rp))
2 (54)

Thus, the leading order (small q) eigenvalues ω2(q) ∼ q2. I.e. they are

acoustic modes. We have shown that all elemental lattices must have

acoustic modes for small q.
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In fact, one may show that all harmonic lattices in which the energy

is invariant under a rigid translation of the entire lattice must have at

least one acoustic mode. We will not prove this, but rather make a

simple argument. The rigid translation of the lattice corresponds to a

q = 0 translational mode, since no energy is gained by this translation,

it must be that ωs(q = 0) = 0 for the branch s which contains this

mode. The acoustic mode may be obtained by perturbing (in q) around

this point. Physically this mode corresponds to all of the elements of

the basis moving together so as to emulate the motion in the elemental

basis.

2 The Counting of Modes

In the sections to follow, we need to perform sums (integrals) of func-

tions of the dispersion over the crystal momentum states k within the

reciprocal lattice. However, the translational and point group symme-

tries of the crysal, often greatly reduce the set of points we must sum. In

addition, we often approximate very large systems with hypertoroidal

models with periodic boundary conditions. This latter approximation

becomes valid as the system size diverges so that the surface becomes

of zero measure.
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2.1 Periodicity and the Quantization of States

A consequence of approximating our system as a finite-sized periodic

system is that we now have a discrete sum rather than an integral over

k. Consider a one-dimensional finite system withN atoms and periodic

boundary conditions. We seek solutions to the phonon problem of the

type

sn = ǫ(q)ei(qrn−ωt) where rn = na (55)

and we require that

sn+N = sn (56)

or

q(n+N)a = qna+ 2πm where m is an integer (57)

Then, the allowed values of q = 2πm/Na. This will allow us to convert

the integrals over the Brillouin zone to discrete sums, at least for cubic

systems; however, the method is easily generalized for other Bravais

lattices.

2.2 Translational Invariance: First Brillouin Zone

We can use the translational invariance of the crystal to reduce the

complexity of sums or integrals of functions of the dispersion over the

crystal momentum states. As shown above, translationally invariant

systems have states which are not independent. It is useful then to de-

fine a region of k-space which contains only independent states. Sums
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G vector

Bisector

First Brillouin Zone

Figure 9: The First Brillouin Zone. The end points of all vector pairs that satisfy

the Bragg condition k − k0 = Ghkl lie on the perpendicular bisector of Ghkl. The

smallest polyhedron centered at the origin of the reciprocal lattice and enclosed by

perpendicular bisectors of the G’s is called the first Brillouin zone.

over k may then be confined to this region. This region is defined as

the smallest polyhedron centered at the origin of the reciprocal lattice

and enclosed by perpendicular bisectors of the G’s is called the Bril-

louin zone (cf. Fig. 9). Typically, we choose to include only half of the

bounding surface within the first Brillouin zone, so that it can also be

defined as the set of points which contains only independent states.

From the discussion in chapter 3 and in this chapter, it is also clear

that the reciprocal lattice vectors have some interpretation as momen-

tum. For example, the Laue condition requires that the change in

momentum of the scatterer be equal to a reciprocal lattice translation

vector. The end points of all vector pairs that satisfy the Bragg condi-

tion k−k0 = Ghkl lie on the perpendicular bisector of Ghkl. Thus, the

FBZ is also the set of points which cannot satisfy the Bragg condition.
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2.3 Point Group Symmetry and Density of States

Two other tricks to reduce the complexity of these sums are worth

mentioning here although they are discussed in detail elswhere.

The first is the use of the point group symmetry of the system. It

is clear from their definition in chapter 3, the reciprocal lattice vectors

have the same point group symmetry as the lattice. As we discussed

in chapter 2, the knowledge of the group elements and corresponding

degeneracies may be used to reduce the sums over k to the irreducible

wedge within the the First Brillioun zone. For example, for a cubic

system, this wedge is only 1/233! or 1/48th of the the FBZ!

The second is to introduce a phonon density of states to reduce the

multidimensional sum over k to a one-dimensional integral over energy.

This will be discussed in chapter 5.

3 Normal Modes and Quantization

In this section we will derive the equations of motion for the lattice, de-

termine the canonically conjugate variables (the the sense of Lagrangian

mechanics), and use this information to both first and second quantize

the system.

Any lattice displacement may be expressed as a sum over the eigen-
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vectors of the dynamical matrix D.

sn,α,i =
1√
MαN

∑

q,s
Qs(q, t)ǫ

s
α,i(q)eiq·rn (58)

Recall that ǫsα,i(q) are distinguished from us
α,i(q) only in that they are

normalized. Also since q+G is equivalent to q, we need sum only over

the first Brillouin zone. Finally we will assume that Qs(q, t) contains

the harmonic time dependence and since sn,α,i is real Q∗
s(q) = Qs(−q).

We may rewrite both the kinetic and potential energy of the system

as sums over Q. For example, the kinetic energy of the lattice

T =
1

2

∑

n,α,i

Mα (ṡnα,i)
2 (59)

=
1

2N

∑

n,α,i

∑

q,k,r,s

Q̇r(q)ǫrα,i(q)eiq·rnQ̇s(k)ǫsα,i(k)eik·rn (60)

Then as
1

N

∑

n
ei(k+q)·rn = δk,−q and

∑

α,i

ǫrα,iǫ
∗s
α,i = δrs (61)

the kinetic energy may be reduced to

T =
1

2

∑

q,r

∣

∣

∣Q̇r(q)
∣

∣

∣

2
(62)

The potential energy may be rewritten in a similar fashion

V =
1

2

∑

n,m,α,β,i,j

Φm,β,j
n,α,i sn,α,ism,β,j

=
1

2

∑

n,m,α,β,i,j

Φm−n,β,j
0,α,i

N
√

MαMβ
∑

q,k,s,r

Qs(q, t)ǫ
s
α,i(q)eiq·rnQr(k, t)ǫ

r
β,j(k)eik·rm (63)

23



Let rl = rm − rn

V =
1

2

∑

n,l,α,β,i,j

Φl,β,j
0,α,i

N
√

MαMβ
∑

q,k,s,r

Qs(q, t)ǫ
s
α,i(q)eiq·rnQr(k, t)ǫ

r
β,j(k)eik·(rl+rn) (64)

and sum over n to obtain the delta function δk,−q so that

V =
1

2

∑

l,α,β,i,j,s,r

Qs(−k)ǫsα,i(−k)Qr(k)ǫrβ,j(k)
1

√

MαMβ

Φl,β,j
0,α,ie

ik·rl . (65)

Note that the sum over l on the last three terms yields D, so that

V =
1

2

∑

l,α,β,i,j,s,r

Dβ,j
α,i (k)Qs(−k)ǫsα,i(−k)Qr(k)ǫrβ,j(k) . (66)

Then, since
∑

β,j D
βj
αi (k)ǫrβj(k) = ω2

r(k)ǫrα,i(k) and ǫsα,i(−k) = ǫ∗sα,i(k),

V =
1

2

∑

α,i,k,r,s

ǫrα,i(k)ǫ∗sα,i(k)ω2
r(k)Q∗

s(k)Qr(k) (67)

Finally, since
∑

α,i ǫ
r
α,i(k)ǫ∗sα,i(k) = δr,s

V =
1

2

∑

k,s

ω2
s(k) |Qs(k)|2 (68)

Thus we may write the Lagrangian of the ionic system as

L = T − V =
1

2

∑

k,s

(

∣

∣

∣Q̇s(k)
∣

∣

∣

2 − ω2
s(k) |Qs(k)|2

)

, (69)

where the Qs(k) may be regarded as canonical coordinates, and

P ∗
r (k) =

∂L

∂Qr(k)
= Q̇∗

s(k) (70)

(no factor of 1/2 since Q∗
s(k) = Qs(−k)) are the canonically conjugate

momenta.
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The equations of motion are

d

dt





∂L

∂Q̇∗
s(k)



− ∂L

∂Q∗
s(k)

or Q̈s(k) + ω2
s(k)Qs(k) = 0 (71)

for each k, s. These are the equations of motion for 3rN independent

harmonic oscillators. Since going to the Q-coordinates accomplishes the

decoupling of these equations, the {Qs(k)} are referred to as normal

coordinates.

3.1 Quantization and Second Quantization

P.A.M. Dirac laid down the rules of quantization, from Classical Hamilton-

Jacobi classical mechanics to Hamiltonian-based quantum mechanics

following the path (Dirac p.84-89):

1. First, identify the classical canonically conjugate set of variables

{qi, pi}

2. These have Poisson Brackets

{{u, v}} =
∑

i

(

∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

)

(72)

{{qi, pj}} = δi,j {{pi, pj}} = {{qi, qj}} = 0 (73)

3. Then define the quantum Poisson Bracket (the commutator)

[u, v] = uv − vu = ih̄{{u, v}} (74)

4. In particular, [qi, pj] = ih̄δi,j, and [qi, qj] = [pi, pj] = 0.
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Thus, following Dirac, we may now quantize the normal coordinates

[Q∗
r(k), Ps(q)] = ih̄δk,qδr,s where the other commutators vanish .

(75)

Furthermore, since we have a system of 3rN uncoupled harmonic os-

cillators we may immediately second quantize by introducing

as(k) =
1√
2h̄





√

ωs(k)Qs(k) +
i

√

ωs(k)
Ps(k)



 (76)

a†s(k) =
1√
2h̄





√

ωs(k)Q∗
s(k) − i

√

ωs(k)
P ∗

s (k)



 , (77)

or

Qs(k) =

√

√

√

√

h̄

2ωs(k)

(

as(k) + a†s(−k)
)

(78)

Ps(k) = −i
√

√

√

√

h̄ωs(k)

2

(

as(k) − a†s(−k)
)

(79)

Where

[as(k), a†r(q)] = δr,sδq,k [as(k), ar(q)] = [a†s(k), a†r(q)] = 0 (80)

This transformation {Q,P} → {a, a†} is canonical, since is preserves

the commutator algebra Eq. 75, and the Hamiltonian becomes

H =
∑

k,s

h̄ωs(k)

(

a†s(k)as(k) +
1

2

)

(81)

which is a sum over 3rN independent quantum oscillators, each one

referred to as a phonon mode!

The number of phonons in state (k, s) is given by the operator

ns(k) = a†s(k)as(k) (82)
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and a†s(k) and as(k) create and destroy phonons respectively, in the

state (k, s)

a†s(k) |ns(k)〉 =
√

ns(k) + 1 |ns(k) + 1〉 (83)

as(k) |ns(k)〉 =
√

ns(k) |ns(k) − 1〉 (84)

If |0〉 is the normalized state with no phonons present, then the state

with {ns(k)} phonons in each state (k, s) is

|{ns(k)}〉 =











∏

k,s

1

ns(k)!





1

2







∏

k,s

(

a†s(k)
)ns(k) |0〉 (85)

Finally the lattice point displacement

sn,α,i =
1√
MαN

∑

q,s

√

√

√

√

h̄

2ωs(q)

(

as(q) + a†s(−q)
)

ǫsα,i(q)eiq·rn (86)

will be important in the next section, especially with respect to zero-

point motion (i.e.
〈

s2
〉

T=0
6= 0).

4 Theory of Neutron Scattering

To “see” the lattice with neutrons, we want their De Broglie wavelength

λ = h/p

λneutron =
0.29A√

E
E measured in eV (87)

to be of the same length as the intersite distance on the lattice. This

means that their kinetic energy E ≈ 1
2
Mv2 ≈ 0.1eV, or E/kb ≈ 1000K;

i.e. thermal neutrons.
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λ ≈ |    | or |    |

a2

a1

a1 a2nSource of thermal
neutrons

Figure 10: Neutron Scattering. The De Broglie wavelength of the neutrons must

be roughly the same size as the lattice constants in order to learn about the lattice

structure and its vibrational modes from the experiment. This dictates the use of

thermal neutrons.

Since the neutron is chargeless, it only interacts with the atomic

nucleus through a short-ranged nuclear interaction (ignoring any spin-

spin interaction). The range of this interaction is 1 Fermi (10−13cm.)

or about the radius of the atomic nucleus. Thus

λ ∼ A ≫ range of the interaction ∼ 10−13cm. (88)

Thus the neutron cannot ”see” the detailed structure of the nucleus,

and so we may approximate the neutron-ion interaction potential as a

contact interaction

V (r) =
∑

rn

Vnδ(r− rn) (89)

i.e., we may ignore the angular dependence of the scattering factor f.

4.1 Classical Theory of Neutron Scattering

Due to the importance of lattice vibrations, which are inherently quan-

tum in nature, there is a limit to what we can learn from a classical
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theory of diffraction. Nevertheless it is useful to compare the classical

result to what we will develop for the quantum problems.

For the classical problem we will assume that the lattice is elemental

(r = 1) and start with a generalization of the formalism developed in

the last chapter

I ∝ |ρ(K,Ω)|2 (90)

where K = k0 − k and Ω = ω0 − ω. Furthermore, we take

ρ(r(t)) ∝ ∑

n
δ(r− rn(t)) (91)

where

rn(t) = rn + sn(t) and sn(t) =
1√
M

u(q)ei(q·rn−ω(q)t) (92)

describes the harmonic motion of the s-mode with wave-vector q.

ρ(K,Ω) ∝ ∑

n

∫

dtei[K·(rn+sn(t))−Ωt] . (93)

For |K| ∼ 2π/A and sn(t) ≪ A we may expand

ρ(K,Ω) ∝ ∑

n

∫

dtei[K·(rn)−Ωt] (1 + iK · sn(t) + · · ·) (94)

The first term yields a finite contribution only when

K = k0 − k = G and Ω = ω0 − ω = 0 (95)

which are the familiar Bragg conditions for elastic scattering.

The second term, however, yields something new. It only yields a

finite result when

K ± q = k0 − k± q = G and Ω ± ωs(q) = ω0 − ω ± ωs(q) = 0 (96)
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When multiplied by h̄ , these can be interpreted as conditions for

the conservation of (crystal) momentum and energy when the scat-

tering event involves the creation (destruction) of a lattice excitation

(phonon). These processes are called Stokes and antistokes processes,

respectively, and are illustrated in Fig. 11.

k  ,0 ω0

ωq
q ,

k =    - q , ω = 

n
k  ,0 ω0

ωq
q ,

n

Stokes Process
(phonon creation)

Anti-Stokes Process
(phonon absorbtion)

ωqω  -0k  0 k =    + q , ω = ωqω  +0k  0

Figure 11: Stokes and antistokes processes in inelastic neutron scattering involving

the creation or absorption of a lattice phonon.

Clearly, the anti-Stokes process can only happen at finite tempera-

tures where real (as opposed to virtual) phonons are excited. Thus, our

classical formalism does not correctly describe the temperature depen-

dence of the scattering. Several other things are missing in the classical

theory, including:

• Security in the validity of the result.

• The effects of zero-point motion.

• Correct temperature dependence.
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4.2 Quantum Theory of Neutron Scattering

To address these concerns, we will do a fully quantum calculation.

Several useful references for this calculation include

• Ashcroft and Mermin, Appendix N, p. 790)

• Callaway, p. 36–.

• Hook and Hall (for experiment) Ch. 12 p.342-

We will imagine that the scattering shown in Fig. 12 occurs in a box

of volume V . The momentum transfer, from the neutron to the lattice

k  ⋅0

ω0

n
V√
1− e i( • r - ω0 t )

k  ⋅0
ωn

Initial

k  ⋅

k  ⋅f
V√
1−e

i( • r - ωf t )

φ   

ψ  =
0 ψ  =

f

0 E   0 φ   
f E   f

Final

Figure 12: The initial (left) and final (right) states of the neutron and lattice during

a scattering event. The initial system state is given by Ψ0 = φ0ψ0, with energy

ǫ0 = E0 + h̄ω0 where ω0 = k2
0/2M . The final system state is given by Ψf = φfψf ,

with energy ǫf = Ef + h̄ωf where ωf = k2
f/2M .

is K = k0 − kf and the energy transfer which is finite for inelastic

scattering is h̄Ω = h̄ (ω0 − ωf). Again we will take the neutron-lattice
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interaction to be local

V (r) =
∑

rn

V (r− rn) =
1

N

∑

q,n
V (q)eiq·(r−rn) =

∫ d3q

V
V0

∑

n
eiq·(r−rn) (97)

where the locality of the interaction (V (r − rn) ∝ δ(r − rn)) indicates

that V (q) = V (0) = V0. Consistent with Aschcroft and Mermin, we

will take

V (r) =
2πh̄2a

M

1

V

∑

rn

∫

d3qeiq·(r−rn) (98)

where a is the scattering length, and V0 = 2πh̄2a
M is chosen such that the

total cross section σ = 4πa2.

To formulate our quantum theory, we will use Fermi’s golden rule

for time dependent perturbation theory. (This is fully equivalent to the

lowest-order Born approximation). The probability per unit time for a

neutron to scatter from state k0 to kf is given by

P =
2π

h̄

∑

f

δ(ǫ0 − ǫf) |〈Ψ0 |V |Ψf〉|2 (99)

=
2π

h̄

∑

f

δ(E0 + h̄ω0 −Ef − h̄ωf)

∣

∣

∣

∣

∣

1

V

∫

d3rei(k−k0)·r 〈φ0 |V (r)|φf〉
∣

∣

∣

∣

∣

2

(100)

If we now substitute in the ion-neutron potential Eq. 98, then the inte-

gral over r will yield a delta function V δ(q + k− k0) which allows the

q integral to be evaluated

P = a2 (2πh̄)3

(MV )2

∑

f

δ(E0 − Ef + h̄Ω)

∣

∣

∣

∣

∣

∑

rn

〈

φ0

∣

∣

∣e−iK·rn

∣

∣

∣φf

〉

∣

∣

∣

∣

∣

2

(101)
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Now, before proceeding to a calculation of the differential cross sec-

tion dσ
dΩdE we must be able to convert this probability (rate) for eigen-

states into a flux of neutrons of energy E and momentum p. A differ-

ential volume element of momentum space d3p contains V d3p/(2πh̄)3

neutron states. While this is a natural consequence of the uncertainty

principle, it is useful to show this in a more quantitative sense: Imagine

a cubic volume V = L3 with periodic boundary conditions so that for

any state Ψ in V ,

Ψ(x+ L, y, z) = Ψ(x, y, z) (102)

If we write Ψ(r) = 1
N

∑

q e
iq·rΨ(q), then it must be that

qxL = 2πm where m is an integer (103)

with similar relations for the y and z components. So for each volume

element of q-space
(

2π
L

)3
there is one such state. In terms of states p =

h̄q, the volume of a state is (2πh̄/L)3. Thus d3p contains V d3p/(2πh̄)3

states.

The incident neutron flux of states (velocity times density) is

j =
h̄k0

M
|Ψ0|2 =

h̄k0

M

∣

∣

∣

∣

∣

1√
V
eik0·r

∣

∣

∣

∣

∣

2

=
h̄k0

MV
(104)

Then since the number of neutrons is conserved

j
dσ

dEdΩ
dEdΩ =

h̄k0

MV

dσ

dEdΩ
dEdΩ = PV

d3p

(2πh̄)3
= PV

p2dpdΩ

(2πh̄)3
(105)
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And for thermal (non-relativistic) neutrons E = p2/2M , so dE =

pdp/M , and
h̄k0

MV

dσ

dEdΩ
dEdΩ = PV

h̄kMdEdΩ

(2πh̄)3
(106)

or
dσ

dEdΩ
= P

k

k0

(MV )2

(2πh̄)3
. (107)

Substituting in the previous result for P

dσ

dEdΩ
=

k

k0

(MV )2

(2πh̄)3
a2 (2πh̄)3

(MV )2

∑

f

δ(E0 − Ef + h̄Ω)

∣

∣

∣

∣

∣

∑

rn

〈

φ0

∣

∣

∣e−iK·rn

∣

∣

∣φf

〉

∣

∣

∣

∣

∣

2

(108)

or
dσ

dEdΩ
=

k

k0

Na2

h̄
S(K,Ω) (109)

where

S(K,Ω) =
1

N

∑

f

δ(E0 −Ef + h̄Ω)

∣

∣

∣

∣

∣

∑

rn

〈

φ0

∣

∣

∣e−iK·rn

∣

∣

∣φf

〉

∣

∣

∣

∣

∣

2

. (110)

We may deal with the Dirac delta function by substituting

δ(Ω) =
∫ ∞

−∞
dt

2π
eiΩt . (111)

so that

S(K,Ω) =
1

N

∑

f

∫ ∞

−∞
dt

2π
ei((E0−Ef )/h̄+Ω)t

∑

rn,rm

∣

∣

∣

〈

φ0

∣

∣

∣eiK·rn

∣

∣

∣φf

〉∣

∣

∣

∣

∣

∣

〈

φf

∣

∣

∣e−iK·rm

∣

∣

∣φ0

〉∣

∣

∣ . (112)

then as

e−iHt/h̄ |φl〉 = e−iElt/h̄ |φl〉 (113)
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where H is the lattice Hamiltonian, we can write this as

S(K,Ω) =
1

N

∑

f

∫ ∞

−∞
dt

2π
eiΩt ∑

rn,rm

〈

φ0

∣

∣

∣eiHt/h̄eiK·rne−iHt/h̄
∣

∣

∣φf

〉

〈

φf

∣

∣

∣e−iK·rm

∣

∣

∣φ0

〉

, (114)

and the argument in the first expectation value is the time-dependent

operator eiK·rn in the Heisenberg representation

eiK·rn(t) = eiHt/h̄eiK·rne−iHt/h̄ . (115)

Thus,

S(K,Ω) =
1

N

∑

f

∫ ∞

−∞
dt

2π
eiΩt ∑

rn,rm

〈

φ0

∣

∣

∣eiK·rn(t)
∣

∣

∣φf

〉 〈

φf

∣

∣

∣e−iK·rm

∣

∣

∣φ0

〉

=
1

N

∫ ∞

−∞
dt

2π
eiΩt ∑

rn,rm

〈

φ0

∣

∣

∣eiK·rn(t)e−iK·rm

∣

∣

∣φ0

〉

. (116)

Now since rn(t) = rn + sn(t) (with rn time independent),

S(K,Ω) =
1

N

∑

n,m

∫ ∞

−∞
dt

2π
ei(K·(rn−rm)+Ωt)

〈

φ0

∣

∣

∣eiK·sn(t)e−iK·sm

∣

∣

∣φ0

〉

. (117)

This formula is correct at zero temperature. In order to describe

finite T effects (ie., anti-stokes processes involving phonon absorption)

we must introduce a thermal average over all states

〈φ0 |A|φ0〉 → 〈A〉 =
∑

l

e−βEl 〈φl |A|φl〉 /
∑

l

e−βEl . (118)

With this substitution,

S(K,Ω) =
1

N

∑

n,m

∫ ∞

−∞
dt

2π
ei(K·(rn−rm)+Ωt)

〈

eiK·sn(t)e−iK·sm
〉

. (119)

and S(K,Ω) is called the dynamical structure factor.
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4.2.1 The Debye-Waller Factor

To simplify this relation further, recall that the exponentiated operators

within the brackets are linear functions of the creation and annihilation

operators a† and a.

sn,α(t) =
1√
MαN

∑

q,s

√

√

√

√

h̄

2ωs(q)
ǫsα(q)

(

as(q)(t) + a†s(−q)(t)
)

eiq·rn (120)

So that, in particular 〈sn,α,i(t)〉 = 〈sn,α,i(0)〉 = 0. Then let A = iK ·
sn,α,i(t) and B = iK · sm,α,i(0) and suppose that the expectation values

of A and B are small. Then

〈

eAeB
〉

=

〈

(1 + A+
1

2
A2 + · · ·)(1 +B +

1

2
B2 + · · ·)

〉

≈
〈

1 + A+B + AB +
1

2
A2 +

1

2
B2 + · · ·

〉

≈ 1 +
1

2

〈

2AB +A2 + B2
〉

+ · · ·

≈ e
1

2
〈2AB+A2+B2〉 (121)

This relation is in fact true to all orders, as long as A and B are linear

functions of a† and a . (c.f. Ashcroft and Mermin, p. 792, Callaway pp.

41-48). Thus

〈

eiK·sn(t)e−iK·sm
〉

= e−
1

2〈(K·sn(t))
2〉e− 1

2〈(K·sm)
2〉e〈K·sn(t)K·sm〉 . (122)

Since the Hamiltonian has no time dependence, and the lattice is in-

variant under translations rn

〈

eiK·sn(t)e−iK·sm
〉

= e−〈(K·sn)
2〉e〈K·sn−m(t)K·s0〉 , (123)
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where the first term is called the Debye-Waller factor e−2W .

e−2W = e−〈(K·sn)2〉 . (124)

Thus letting l = n−m

S(K,Ω) = e−2W ∑

l

∫ ∞

−∞
dt

2π
ei(K·rl+Ωt)e〈K·sl(t)K·s0〉 . (125)

Here the Debye-Waller factor contains much of the crucial quantum

physics. It is finite, even at T = 0 due to zero-point fluctuations, and

since 〈K · sn〉2 will increase with temperature, the total strength of the

Bragg peaks will diminish with increasing T . However, as long as a

crystal has long-ranged order, it will remain finite.

4.2.2 Zero-phonon Elastic Scattering

One may disentangle the elastic and inelastic processes by expanding

the exponential in the equation above.

e〈K·sl(t)K·s0〉 =
∑

m

1

m!
(〈K · sl(t)K · s0〉)m (126)

If we approximate the exponential by 1, ie. take only the first, m = 0

term, then

S0(K,Ω) = e−2W ∑

l

∫ ∞

−∞
dt

2π
ei(K·rl−Ωt) . (127)

And we recover the lowest order classical result (modified by the Debye-

Waller factor) which gives us the Bragg conditions that S0(K,Ω) is only

finite when K = G and Ω = ω0 − ωf = 0.

S0(K,Ω) = e−2W δ(Ω)N
∑

G

δK,G , (128)
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dσ0

dEdΩ
=

k

k0

Na2

h̄
e−2Wδ(Ω)N

∑

G

δK,G (129)

However, now the scattering intensity is reduced by the Debye-

Waller factor e−2W , which accounts for zero-point motion and thermal

fluctuations.

4.2.3 One-Phonon Inelastic Scattering

When m = 1, then the scattering involves either the absorption or

creation of a phonon. To evaluate

S1(K,Ω) = e−2W ∑

l

∫ ∞

−∞
dt

2π
ei(K·rl+Ωt) 〈K · sl(t)K · s0(0)〉 . (130)

we need

sn,α(t) =
1√
MαN

∑

q,s

√

√

√

√

h̄

2ωs(q)
ǫsα(q)

(

as(q, t) + a†s(−q, t)
)

eiq·rn (131)

in the Heisenberg representation, and therefore we need,

a(q, t) = eiHt/h̄a(q)e−iHt/h̄

= ei(ω(q)ta†(q)a(q))a(q)e−i(ω(q)ta†(q)a(q)

= a(q)ei(ω(q)t(a†(q)a(q)−1))e−i(ω(q)ta†(q)a(q)

= a(q)e−iω(q)t (132)

where we have used the fact that (a†a)na = (a†a)n−1a†aa = (a†a)n−1(aa†−
1)a = (a†a)n−1a(a†a−1) = a(a†a−1)n. Similarly a†(q, t) = a†(q)eiω(q)t.

Thus,

sn,α(t) =
1√
MαN

∑

q,s

√
h̄eiq·rn

√

2ωs(q)
ǫsα(q)

(

as(q)e−iωs(q)t + a†s(−q)eiωs(q)t
)

(133)
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and

s0,α(0) =
1√
MαN

∑

p,r

√

√

√

√

h̄

2ωr(p)
ǫrα(p)

(

ar(p) + a†r(−p)
)

(134)

Recall, we want to evaluate

S1(K,Ω) = e−2W ∑

l

∫ ∞

−∞
dt

2π
ei(K·rl+Ωt) 〈K · sl(t)K · s0(0)〉 . (135)

Clearly, the only terms which survive in 〈K · sl(t)K · s0(0)〉 are those

with r = s and p = −q. Furthermore, the sum over l yields a delta

function N
∑

G δK+q,G. Then as ǫ(G−k) = ǫ(−k) = ǫ∗(k), and ω(G−
k) = ω(k),

S1(K,Ω) = e−2W
∫ ∞

−∞
dt

2π
eiΩt ∑

q,G,s

h̄ |K · ǫ(K)|2
2ωs(q)M

δK+q,G (136)

[

e−iωs(q)t
〈

as(−K)a†s(−K)
〉

+ eiωs(q)t
〈

a†s(−K)as(−K)
〉]

The occupancy of each mode n(q) is given by the Bose factor

〈n(q)〉 =
1

eβω(q) − 1
(137)

So, finally

S1(K,Ω) = e−2W ∑

s

h̄

2Mωs(K)
|K · ǫs(K)|2 (138)

[(1 + ns(K))δ(−Ω + ωs(K)) + ns(K)δ(Ω + ωs(K))] .

For the first term, we get a contribution only when Ω − ωs(K) = ω0 −
ωf − ωs(K) = 0; ie., the final energy of the neutron is smaller than the

initial energy. The energy is lost in the creation of a phonon. Note that
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this can happen at any temperature, since (1 + ns(K)) 6= 0 at any T .

The second term is only finite when Ω+ωs(K) = ω0 −ωf +ωs(K) = 0;

ie., the final energy of the neutron is larger than the initial energy. The

additional energy comes from the absorption of a phonon. Thus phonon

absorption is only allowed at finite temperatures, and in fact, the factor

ns(K) = 0 at zero temperature. These terms correspond to the Stokes

and anti-Stokes processes, respectively, illustrated in Fig. 13.

k  ,0 ω0

ωq
q ,

k =    - q , ω = 

n
k  ,0 ω0

ωq
q ,

n

Stokes Process
(phonon creation)

Anti-Stokes Process
(phonon absorbtion)

ωqω  -0k  0 k =    + q , ω = ωqω  +0k  0

1 + n (K)s
n (K)s

Figure 13: Stokes and antistokes processes in inelastic neutron scattering involving

the creation or absorption of a lattice phonon. The antistokes process can only occur

at finite-T, when ns(K) 6= 0.

If we were to continue our expansion of the exponential to larger

values of m, we would find multiple-phonon scattering processes. How-

ever, these terms are usually of minimal contribution to the total cross

section, due to the fact that the average ionic excursion s is small, and

are usually neglected.
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