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In the last two chapters, we learned that solids generally form pe-

riodic structures of different symmetries and bases. However, given a

solid material, how do we learn what its periodic structure is? Typ-

ically, this is done by diffraction, where we project a beam (of either

particles or radiation) at a solid with a wavelength λ ≈ the characteris-

tic length scale of the lattice ( a ≈ twice the atomic or molecular radii

of the constituents). Diffraction of waves and particles (with de Broglie

λ ≈ |    | or |    |

incident waves 
      or particles

d
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Figure 1: Scattering of waves or particles with wavelength of roughly the same size

as the lattice repeat distance allows us to learn about the lattice structure. Coherent

addition of two particles or waves requires that 2d sin θ = λ (the Bragg condition),

and yields a scattering maximum on a distant screen.

wavelength λ = h/p) of λ ≈ a allows us to learn about the periodic

structure of crystals. In a diffraction experiment one identifies Bragg

peaks which originate from a coherent addition of scattering events in
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multiple planes within the bulk of the solid.

However, not all particles with de Broglie wavelength λ ≈ a will

work for this application. For example, most charged particles cannot

probe the bulk properties of the crystal, since they lose energy to the

scatterer very quickly. Recall, from classical electrodynamics, the rate

at which particles of charge q, mass M , and velocity v lose energy to

the electrons of charge e and mass m in the crystal is given roughly by

dE

dx
≈ −4πnq2e2

mv2
ln





mγ2v3

qeω0



 ∼ q2

v2
. (1)

As an example, consider a non-relativistic electron scattering into a

solid with a ≈ 2A. If we require that a = λ = h/p = 12.3×10−8cm/
√

E

when E is measured in electron volts, then E ≈ 50eV. If we solve

Eq. 1 for the distance δx where the initial energy of the incident is lost

requiring that δE = E, when n ≈ 1023/cm3 we find that δx ≈ 100A.

Thus, if λ ≈ a, the electrons do not penetrate into the bulk of the

sample (typically the first few hundred A of most materials are oxidized,

or distorted by surface reconstruction of the dangling bonds at the

surface, etc. See Fig. 2) Thus, electrons do not make a very good probe

of the bulk properties of a crystal (instead in a process call low-energy

electron diffraction, LEED, they may be used to study the surface of

especially clean samples. I.e. to study things like surface reconstruction

of the dangling bonds, etc.). Thus although they are obviously easier

to accelerate (electrons or ion beams), they generally do not penetrate

into the bulk and so tell us more about the surface properties of solids
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v

e-

Oxygen

Figure 2: An electron about to scatter from a typical material. However, at the surface

of the material, oxidation and surface reconstruction distort the lattice. If the electron

scatters from this region, we cannot learn about the structure of the bulk.

which are often not representative of the bulk.

Thus the particle of the choice to determine bulk properties is the

neutron which is charge neutral and scatters only from the nuclei. Ra-

diation is often also used. Here the choice is only a matter of the

wavelength used. X-rays are chosen since then λ ≈ a

1 Classical Theory of diffraction

In this theory of diffraction we will be making three basic assumptions.

1. That the operator which describes the coupling of the target to

the scattered ”object” (in this case the operator is the density)
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commutes with the Hamiltonian. Thus, this will be a classical

theory.

2. We will assume some form of Huygens principle: that every radi-

ated point of the target will serve as a secondary source spherical

wavelets of the same frequency as the source and the amplitude

of the diffracted wave is the sum of the wavelengths considering

their amplitudes and relative phases. (For light, this is equivalent

to assuming that it is unpolarized, and that the diffraction pattern

varies quickly with scattering angle θ so that the angular depen-

dence of a unpolarized dipole, 1 + (cos θ)2, may be neglected.)

3. We will assume that resulting spherical waves are not scattered

again. In the fully quantum theory which we will derive later

for neutron scattering, this will correspond to approximating the

scattering rate by Fermi’s golden rule (first-order Born approxi-

mation).

The basic setup of a scattering experiment is sketched in Fig. 3.

Generally, we will also assume that |R| ≫ |r|, so that we may always

approximate the amplitude of the incident waves on the target as plane

waves.

AP = AOei(k0·(R+r)−ω0t) . (2)
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Figure 3: Basic setup of a scattering experiment.

Then, consistent with the second assumption above,

AB(R′) ∝
∫

d3rAPρ(r)
eik·(R′−r)

|R′ − r| , (3)

which, after substitution of Eq.2, becomes

AB(R′) ∝ AOei(k0·R+k·R′−ω0t)
∫

d3rρ(r)
e−i(k−ko)·r

|R′ − r| . (4)

At very large R′ (ie. in the radiation or far zone)

AB(R′) ∝ AOei(k0·R+k·R′−ω0t)

R′

∫

d3rρ(r)e−i(k−ko)·r . (5)

Or, in terms of the scattered intensity IB ∝ |AB|2

IB ∝ |AO|2
R′2

∣

∣

∣

∣

∫

d3rρ(r)e−i(k−ko)·r
∣

∣

∣

∣

2
. (6)

The scattering intensity is just the absolute square of the Fourier trans-

form of the density of scatterers. If we let K = k−k0 (cf. Fig. 1), then

we get

IB(K) ∝ |AO|2
R′2

∣

∣

∣

∣

∫

d3rρ(r)e−iK·r
∣

∣

∣

∣

2
=

|AO|2
R′2 |ρ(K)|2 . (7)
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From the associated Fourier uncertainty principle ∆k∆x ≈ π, we can

see that the resolution of smaller structures requires larger values of K

(some combination of large scattering angles and short wavelength of

the incident light), consistent with the discussion at the beginning of

this chapter.

I(K) ρ(r)

Figure 4: Since the measured scattering intensity I(K) ∝ |ρ(K)|2 the complex phase

information is lost. Thus, a scattering experiment does not provide enough informa-

tion to invert the transform ρ(r) =
∫

d3r

(2π)3
ρ(K)e+iK·r.

In experiments the intensity I as a function of the scattering angle K

is generally measured. In principle this is under-complete information.

In order to invert the Fourier transform (which is a unitary transfor-

mation) we would need to know both the real and imaginary parts

of

ρ(K) =
∫

d3rρ(r)e−iK·r . (8)

Of course, if the experiment just measures I ∝ |ρ(K)|2, then we lose

the relative phase information (i.e. ρ(K) = ρKeiθK so that I ∝ |ρK |2,
and the phase information θK is lost). So, from a complete experiment,

measuring I(K) for all scattering angles, we do not have enough infor-
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mation to get a unique ρ(r) by inverting the Fourier transform. Instead

experimentalists analyze their data by proposing a feasible model struc-

ture (i.e. a ρ(r) corresponding to some guess of which of one the 14 the

Bravais lattice and the basis), Fourier transform this, and compare it to

the experimental data. The parameters of the model are then adjusted

to obtain a best fit.

2 Scattering from Periodic Structures

Given this procedure, it is important to study the scattering pattern

that would arise for various periodic structures. The density in a peri-

odic crystal must have the same periodicity of the crystal

ρ(r + rn) = ρ(r) where rn = n1a1 + n2a2 + n3a3 (9)

for integer n1, n2, n2. This also implies that the Fourier coefficients of ρ

will be chosen from a discrete set. For example, consider a 1-d periodic

structure

a

ρ(x + na) = ρ(x) . (10)

Then we must choose the Gn

ρ(x) =
∑

n
ρne

iGnx , (11)
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so that

ρ(x + ma) =
∑

n
ρne

iGn(x+ma) =
∑

n
ρne

iGn(x)eiGnma

=
∑

n
ρne

iGn(x) = ρ(x) , (12)

I.e. eiGnma = 1, or Gn = 2nπ/a where n is an integer.

This may be easily generalized to three dimensions, for which

ρ(r) =
∑

G

ρGeiG·r (13)

where the condition of periodicity ρ(r + rn) = ρ(r) means that

G · rn = 2πm m ∈ Z (14)

where Z is the group of integers (under addition). Now, lets consider

G in some three-dimensional space and decompose it in terms of three

independent basis vectors for which any two are not parallel and the

set is not coplanar

G = hg1 + kg2 + lg3 . (15)

The condition of periodicity then requires that

(hg1 + kg2 + lg3) · n1a1 = 2πm m ∈ Z (16)

with similar conditions of the other principle lattice vectors a2 and a3.

Since g1, g2 and g3 are not parallel or coplanar, the only way to satisfy

this constraint for arbitrary n1 is for

g1 · a1 = 2π g2 · a1 = g3 · a1 = 0 (17)
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or some other permutation of 1 2 and 3, which would just amount to

a renaming of g1, g2, and g3. The set (g1, g2, g3) are called the basis

set for the reciprocal lattice. They may be constructed from

g1 = 2π
a2 × a3

a1 · (a2 × a3)
plus cyclic permutations . (18)

It is easy to see that this construction satisfies Eq. 17, and that there

is a one to one correspondence between the lattice and its reciprocal

lattice. So, the reciprocal lattice belongs to the same point group as

the real-space lattice1.

2.1 The Scattering Intensity for a Crystal

Lets now apply this form for the density

ρ(r) =
∑

G

ρGeiG·r (19)

to our formula for the scattering intensity

IB(K) ∝ |AO|2
R′2

∣

∣

∣

∣

∣

∣

∫

d3r
∑

G

ρGe−i(K−G)·r
∣

∣

∣

∣

∣

∣

2

(20)

The integral above is simply

V δG,K =















V if G = K

0 if G 6= K
, (21)

1One should note that this does not mean that the reciprocal lattice must have the same Bravais

lattice structure as the real lattice. For example, the reciprocal of a fcc lattic is bcc and vice versa.

This is consistent with the the statement that the reciprocal lattice belongs to the same point group

as the real-space lattice since fcc and bcc share the Oh point group
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where V is the lattice volume, so

IB(K) ∝ |AO|2
R′2 |ρG|2 V 2δG,K (22)

This is called the Laue condition for scattering. The fact that this is

proportional to V 2 rather than V just indicates that the diffractions

spots, in this approximation, are infinitely bright (for a sample in the

thermodynamic limit). Of course, this is because the spots are infinitely

narrow or fine. When real broadening is taken into account, IB(K) ∝ V

as expected.

Then as G = hg1 + kg2 + lg3, we can label the spots with the three

integers (h, k, l ), or

Ihkl ∝ |ρhkl|2 . (23)

Traditionally, negative integers are labled with an overbar, so −h → h.

Then as ρ(r) is real, ρG = ρ−G, or

Ihkl = Ihkl Friedel’s rule (24)

Most scattering experiments are done with either a rotating crystal, or

a powder made up of many crystalites. For these experiments, Friedel’s

rule has two main consequences

• For every spot at k − k0 = G, there will be one at k′ − k0 =

−G. Thus, for example if we scatter from a crystal with a 3-fold

symmetry axis, we will get a six-fold scattering pattern. Clearly

this can only happen, satisfy the Laue condition, and have |k| =
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|k0|, if the crystal is rotated by π in some axis perpendicular to the

three-fold axis. In fact, single-crystal experiments are usually done

either by mounting the crystal on a precession stage (essentially

like an automotive universal joint, with the drive shaft held fixed,

and the joint rotated over all angles), or by holding the crystal fixed

and moving the source and diffraction screen around the crystal.

• The scattering pattern always has an inversion center, G → −G

even when none is present in the target!

2.2 Bragg and Laue Conditions (Miller Indices)

Above, we derived the Laue condition for scattering; however, we began

this chapter by reviewing the Bragg condition for scattering from ad-

jacent planes. In this subsection we will show that, as expected, these

are the some condition.

Consider the real-space lattice shown in Fig. 5. Highlighted by the

solid lines are the parallel planes formed by (1, 2, 2) translations along

the principle lattice vectors (a1, a2, a3), respectively. Typically these

integers are labeled by (m, n, o), however, the plane is not typically

labeled as the (m, n, o) plane. Rather it is labeled with the inverses

h′ = 1/m k′ = 1/n l′ = 1/o . (25)

Since these typically are not integers, they are multiplied by p, the
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(211) plane
a1

a2

a3

O

a 1

γ
G

hkl
d

h’k’l’

h’k’l’ plane

Figure 5: Miller indices identification of planes in a lattice. Highlighted by the solid

lines are the parallel planes formed by (1, 2, 2) translations along the principle lattice

vectors (a1, a2, a3), respectively. Typically these integers are labeled by (m, n, o), how-

ever, the plane is not typically labeled as the (m, n, o) plane. Rather it is labeled with

the inverses h′ = 1/m k′ = 1/n l′ = 1/o. Since these typically are not integers,

they are multiplied by p, the smallest integer such that p(h′, k′, l′) = (h, k, l) ∈ Z. In

this case, p = 2, and the plane is labeled as the (2, 1, 1) plane. Note that the plane

formed by (2, 4, 4) translations along the principle lattice vectors is parallel to the

(2, 1, 1) plane.

smallest integer such that

p(h′, k′, l′) = (h, k, l) ∈ Z . (26)

In this case, p = 2, and the plane is labeled as the (2, 1, 1) plane.

On may show that the reciprocal lattice vector Ghkl lies perpendicu-

lar to the (h, k, l) plane, and that the length between adjacent parallel

planes dhkl = 2π/Ghkl. To show this, note that the plane may be defined
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by two non-parallel vectors v1 and v2 within the plane. Let

v1 = ma1−na2 = a1/h
′−a2/k

′ v2 = oa3−na2 = a3/l
′−a2/k

′ . (27)

Clearly the cross product, v1×v2 is perpendicular to the (h, k, l) plane

v1 × v2 = −a3 × a1

h′l′
− a1 × a2

h′k′ − a2 × a3

k′l′
. (28)

If we multiply this by −2πh′k′l′/a1 · (a2 × a3), we get

−2πh′k′l′v1 × v2

a1 · (a2 × a3)
=

2πp

p



k′ a3 × a1

a1 · (a2 × a3)
+ l′

a1 × a2

a1 · (a2 × a3)
+ h′ a2 × a3

a1 · (a2 × a3)



 =

Ghkl/p (29)

Thus, Ghkl ⊥ to the (h, k, l) plane. Now, if γ is the angle between a1

and Ghkl, then the distance dh′k′l′ from the origin to the (h′, k′, l′) plane

is given by

dh′k′l′ = m|a1| cos γ =
|a1|a1 · Ghkl

h′|a1||Ghkl|
=

2πh

h′Ghkl

=
2πp

Ghkl

(30)

Then, as there are p planes in this distance (cf. Fig. 5), the distance to

the nearest one is

dhkl = dh′,k′,l′/p = 2π/Ghkl (31)

With this information, we can reexamine the Laue scattering con-

dition K = k − ko = Ghkl, and show that it is equivalent to the

more intuitive Bragg condition. Part of the Laue is condition is that

|K| = K = |k − k0| = Ghkl, now

K = 2k0 sin θ =
4π

λ
sin θ and Ghkl = 2π/dhkl (32)
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thus, the Laue condition implies that

1/dhkl = 2 sin θ/λ or λ = 2dhkl sin θ (33)

which is the Bragg condition. Note that the Laue condition is more

G

θk

k

k0
hkl plane

hkl

Laue Condition
(in reciprocal space)

Bragg Condition
(in real space)

θk

k0

dhkl

d   sin(θ)hkl

2d   sin(θ) = λhkl
K= k - k  = Ghkl0

Figure 6: Comparison of the Bragg λ = 2dhkl sin θ and Laue Ghkl = Khkl conditions

for scattering.

restrictive than the Bragg condition; it requires that both the magnitude

and the direction of G and K be the same. However, there is no

inconsistency here, since whenever we apply the Bragg condition, we

assume that the plane defined by k and k0 is perpendicular to the

scattering planes (cf. Fig. 6).
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Figure 7: Examples of lattices with non-trivial bases. The CuO2 lattice (left) is char-

acteristic of the cuprate high-temperature superconductors. It has a basis composed of

one Cu and two O atoms imposed on a simple cubic lattice. The BCC lattice(right)

can be considered as a cubic lattice with a basis including an atom at the corner and

one at the center of the cube.

2.3 The Structure Factor

Thus far, we have concentrated on the diffraction pattern for a periodic

lattice ignoring the fine structure of the molecular of the basis. Exam-

ples of non-trivial molecular bases are shown in Fig. 7. Clearly the basis

structure will effect the scattering (Fig. 8). For example, there will be

interference from the scattering off of the Cu and two O in each cell. In

fact, even in the simplest case of a single-element basis composed of a

spherical atom of finite extent, scattering from one side of the atom will

interfere with that from the other. In each case, the structure of the

basis will change the scattering pattern due to interference of the waves
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scattering from different elements of the basis. The structure factors

account for these interference effects. The information about this in-

terference, and the basis structure is contained in the atomic scattering

factor f and the structure factor S.

Cu

O

O

R

Figure 8: Rays scattered from different elements of the basis, and from different places

on the atom, interfere giving the scattered intensity additional structure described by

the form factor S and the atomic form factor f , respectively.

To show this reconsider the scattering formula

Ihkl ∝ |ρhkl|2 (34)

The Fourier transform of the density may be decomposed into an inte-

gral over the basis cell, and a sum over all such cells

ρhkl =
1

V

∫

d3rρ(r)e−iGhkl·r =
1

V

∑

cells

∫

cell
d3rρ(r)e−iGhkl·r

=
1

V

∑

n1,n2,n3

∫

cell
d3rρ(r)e−iGhkl·(r+rn) (35)
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where the location of each cell is given by rn = n1a1 + n2a2 + a3a3.

Then since Ghkl · rn = 2πm, m ∈ Z,

ρhkl =
N

V

∫

cell
d3rρ(r)e−iGhkl·r (36)

where N is the number of cells and N
V

= 1/Vc, Vc the volume of a

cell. This integral may be further subdivided into an integral over the

atomic density of each atom in the unit cell. If α labeles the different

elements of the basis, each with density ρα(r′)

ρhkl =
1

Vc

∑

α
e−iGhkl·rα

∫

d3r′ρα(r′)e−iGhkl·r′ (37)

The atomic scattering factor f and the structure factor may then be

defined as parts of this integral

fα =
∫

d3r′ρα(r′)e−iGhkl·r′ (38)

so

ρhkl =
1

Vc

∑

α
e−iGhkl·rαfα =

Shkl

Vc

(39)

fα describes the interference of spherical waves emanating from different

points within the atom, and Shkl is called the structure factor. Note

that for lattices with an elemental basis S = f .

If we imagine the crystal to be made up of isolated atoms like that

shown on the right in Fig. 8 (which is perhaps accurate for an ionic

crystal) then, since the atomic charge density is spherically symmetric

about the atom

fα =
∫

d3r′ρα(r′)e−iGhkl·r′ = −
∫

r′2dr′d(cos θ)dφ ρα(r′)e−Ghklr
′ cos θ
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= 4π
∫

r′2dr′ρ(r′)
sinGhklr

′

Ghklr′
. (40)

As an example, consider a spherical atom of charge Ze−, radius R, and

charge density

ρα(r′) =
3Z

4πR3
θ(R − r′) (41)

then

fα =
3Z

R3

∫ R

0
r′2dr′

sin Ghklr
′

Ghklr′

= − 3Z

(GhklR)3
(sin (GhklR) − (GhklR) cos (GhklR)) (42)

This has zeroes whenever tan (GhklR) = GhklR and a maximum when

Ghkl = 0, or in terms of the scattering angle 2k0 sin θ = Ghkl, when

θ = 0, π. In fact, we have that fα(θ = 0) = Z. This is true in general,

since

fα(θ = 0) = fα(Ghkl = 0) =
∫

d3r′ρα(r′) = Z . (43)

Thus, for x-ray scattering I ∝ Z2. For this reason, it is often difficult

to detect small-Z atoms with x-ray scattering.

2.3.1 The Structure Factor of Centered Lattices

Now let’s look at the structure factor. An especially interesting situa-

tion occurs for centered lattices. We can consider a BCC lattice as a

cubic unit cell |a1| = |a2| = |a3|, a1 ⊥ a2 ⊥ a3 and a two-atom basis

rα = 0.5α(a1 + a2 + a3), α = 0, 1. Now if both sites in the unit cell
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(α = 0, 1) contain the same atom with the same scattering factor f ,

then

rα ·Ghkl = 0.5α(a1 + a2 + a3) · (hg1 + kg2 + lg3) = πα(h + k + l) (44)

so that

Shkl =
∑

α=0,1

fe−iπα(h+k+l)

= f(1 + e−iπ(h+k+l)) =















0 if h + k + l is odd

2f if h + k + l is even

(45)

This lattice gives rise to extinctions (lines, which appear in a cubic lat-

tice, but which are missing here)! If both atoms of the basis are identi-

cal (like bcc iron), then the bcc structure leads to extinctions; however,

consider CsCl. It does not have these extinctions since fCs+ 6= fCl−. In

fact, to a good approximation fCs+ ≈ fXe and fCl− ≈ fAr. However CsI

(also a bcc structure) comes pretty close to having complete extinctions

since both the Cs and I ions take on the Xe electronic shell. Thus, in

the scattering pattern of CsI, the odd h+ k + l peaks are much smaller

than the even ones. Other centered lattices also lead to extinctions.

In fact, this leads us to a rather general conclusion. The shape

and dimensions of the unit cell determines the location of the Bragg

peaks; however, the content of the unit cell helps determine the relative

intensities of the peaks.
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Unit Cell of BCC ordered FeCo

Fe

Co

Figure 9: The unit cell of body-centered cubic ordered FeCo.

Extinctions in Binary Alloys Another, and significantly more interest-

ing, example of extinctions in scattering experiments happens in binary

alloys such as FeCo on a centered BCC lattice. Since Fe and Co are

adjacent to each other on the periodic chart, and the x-ray form factor

is proportional to Z (ZCo = 27, and ZFe = 26)

f x−ray
Fe ≈ f x−ray

Co . (46)

However, since one has a closed nuclear shell and the other doesn’t,

their neutron scattering factors will be quite different

fneutron
Fe 6= fneutron

Co (47)

Thus, neutron scattering from the ordered FeCo structure shown in

Fig. 9 will not have extinctions; whereas scattering from a disordered

structure (where the distribution of Fe and Co is random, so each site

has a 50% chance of having Fe or Co, independent of the occupation

of the neighboring sites) will have extinctions!
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2.3.2 Powdered x-ray Diffraction

If you expose a columnated beam of x-rays to a crystal with a single

crystalline domain, you usually will not achieve a diffraction spot. The

reason why can be seen from the Ewald construction, shown in Fig. 10

For any given k0, the chances of matching up so as to achieve G = k−k0

are remote. For this reason most people use powdered x-ray diffraction

to characterize their samples. This is done by making a powder with

randomly distributed crystallites. Exposing the powdered sample to

x-rays and recording the pattern. The powdered sample corresponds

to averaging over all orientations of the reciprocal lattice. Thus one

will observe all peaks that lie within a radius of 2|k0| of the origin of

the reciprocal lattice.
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G

k

k0

hkl

O

Ewald Sphere

Figure 10: The Ewald Construction to determine if the conditions are correct for

obtaining a Bragg peak: Select a point in k-space as the origin. Draw the incident

wave vector k0 to the origin. From the base of k0, spin k (remember, that for elastic

scattering |k| = |k0|) in all possible directions to form a sphere. At each point where

this sphere intersects a lattice point in k-space, there will be a Bragg peak with G =

k − k0. In the example above we find 8 Bragg peaks. If however, we change k0 by a

small amount, then we have none!
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